Entropy and Huffman Codes

ثبت نشده
چکیده

We will show that • the entropy for a random variable gives a lower bound on the number of bits needed per character for a binary coding • Huffman codes are optimal in the average number of bits used per character among binary codes • the average bits per character used by Huffman codes is close to the entropy of the underlying random variable • one can get arbitrarily close to the entropy of a random variable in terms of bits per character if blocks of several characters are encoded at a time First, some basic notation, some of which is associated to a discrete random variable X. We let

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Bounds on the Average Length, Entropy, and Redundancy of Anti-Uniform Huffman Codes

In this paper we consider the class of anti-uniform Huffman codes and derive tight lower and upper bounds on the average length, entropy, and redundancy of such codes in terms of the alphabet size of the source. The Fibonacci distributions are introduced which play a fundamental role in AUH codes. It is shown that such distributions maximize the average length and the entropy of the code for a ...

متن کامل

Entropy and Average Cost of AUH Codes

In this paper we address the class of anti-uniform Huffman (AUH) codes, named also unary codes, for sources with finite and infinite alphabet, respectively. Geometric, quasi-geometric, Fibonacci, exponential, Poisson, and negative binomial distributions lead to anti – uniform sources for some ranges of their parameters. Huffman coding of these sources results in AUH codes. We prove that as resu...

متن کامل

Introduction to Data Compression

3 Probability Coding 10 3.1 Prefix Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Relationship to Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Huffman Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Combining Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Minim...

متن کامل

Bounds on Generalized Huffman Codes

New lower and upper bounds are obtained for the compression of optimal binary prefix codes according to various nonlinear codeword length objectives. Like the coding bounds for Huffman coding — which concern the traditional linear code objective of minimizing average codeword length — these are in terms of a form of entropy and the probability of the most probable input symbol. As in Huffman co...

متن کامل

The Rényi redundancy of generalized Huffman codes

If optimality is measured by average codeword length, Huffman's algorithm gives optimal codes, and the redundancy can be measured as the difference between the average codeword length and Shannon's entropy. If the objective function is replaced by an exponentially weighted average, then a simple modification of Huffman's algorithm gives optimal codes. The redundancy can now be measured as the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012